Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 25: 100984, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38356962

RESUMO

Blunting the tumor's stress-sensing ability is an effective strategy for controlling tumor adaptive survival and metastasis. Here, we have designed a cyclically amplified nano-energy interference device based on lipid nanoparticles (LNP), focused on altering cellular energy metabolism. This innovative nano device efficiently targets and monitors the tumor's status while simultaneously inhibiting mitochondrial respiration, biogenesis and ribosome production. To this end, we first identified azelaic acid (AA), a binary acid capable of disrupting the mitochondrial respiratory chain. Upon encapsulation in LNP and linkage to mitochondrial-targeting molecules, this disruptive effect is further augmented. Consequently, tumors exhibit a substantial upregulation of the glycolytic pathway, intensifying their glucose demand and worsening the tumor's energy-deprived microenvironment. Then, the glucose analog, 2-Deoxy-D-glucose (2-DG), linked to the LNP, efficiently targets tumors and competitively inhibits the tumor's normal glucose uptake. The synergetic results of combining AA with 2-DG induce comprehensive energy deficiency within tumors, blocking the generation of energy-sensitive ribosomes. Ultimately, the disruption of both mitochondria and ribosomes depletes energy supply and new protein-generating capacity, weakening tumor's ability to adapt to environmental stress and thereby inhibiting growth and metastasis. Comprehensively, this nano-energy interference device, by controlling the tumor's stress-sensing ability, provides a novel therapeutic strategy for refractory tumors.

2.
Mol Oncol ; 15(4): 1234-1255, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33512745

RESUMO

Long noncoding RNAs (lncRNAs) can compete with endogenous RNAs to modulate the gene expression and contribute to oncogenesis and tumor metastasis. lncRNA NKX2-1-AS1 (NKX2-1 antisense RNA 1) plays a pivotal role in cancer progression and metastasis; however, the contribution of aberrant expression of NKX2-1-AS1 and the mechanism by which it functions as a competing endogenous RNA (ceRNA) in gastric cancer (GC) remains elusive. NKX2-1-AS1 expression was detected in paired tumor and nontumor tissues of 178 GC patients by quantitative reverse transcription PCR (qRT-PCR). Using loss-of-function and gain-of-function experiments, the biological functions of NKX2-1-AS1 were evaluated both in vitro and in vivo. Further, to assess that NKX2-1-AS1 regulates angiogenic processes, tube formation and co-culture assays were performed. RNA binding protein immunoprecipitation (RIP) assay, a dual-luciferase reporter assay, quantitative PCR, Western blot, and fluorescence in situ hybridization (FISH) assays were performed to determine the potential molecular mechanism underlying this ceRNA. The results indicated that NKX2-1-AS1 expression was upregulated in GC cell lines and tumor tissues. Overexpression of NKX2-1-AS1 was significantly associated with tumor progression and enhanced angiogenesis. Functionally, NKX2-1-AS1 overexpression promoted GC cell proliferation, metastasis, invasion, and angiogenesis, while NKX2-1-AS1 knockdown restored these effects, both in vitro and in vivo. RIP and dual-luciferase assays revealed that the microRNA miR-145-5p is a direct target of NKX2-1-AS1 and that NKX2-1-AS1 serves as a ceRNA to sponge miRNA and regulate angiogenesis in GC. Moreover, serpin family E member 1 (SERPINE1) is an explicit target for miR-145-5p; besides, the NKX2-1-AS1/miR-145-5p axis induces the translation of SERPINE1, thus activating the VEGFR-2 signaling pathway to promote tumor progression and angiogenesis. NKX2-1-AS1 overexpression is associated with enhanced tumor cell proliferation, angiogenesis, and poor prognosis in GC. Collectively, NKX2-1-AS1 functions as a ceRNA to miR-145-5p and promotes tumor progression and angiogenesis by activating the VEGFR-2 signaling pathway via SERPINE1.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/genética , RNA Longo não Codificante/genética , Transdução de Sinais , Neoplasias Gástricas/patologia , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Neovascularização Patológica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...